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Abstract—Tracking-by-detection approaches have demon-
strated their strength in addressing Multiple Object Tracking
(MOT) problems. DeepSORT, one of the classical tracking-by-
detection MOT methods, relies on a deep appearance descriptor
to extract global appearance features of identities. Although the
appearance descriptor acts as a key component of such tracking-
by-detection methods, which is responsible for modeling appear-
ance information, the relationship between it and tracking perfor-
mance remains unclear, especially whether further improvements
to it will be reflected in the tracking performance. To explore
that, extensive experiments are conducted on the appearance
descriptor by applying various traditional optimization methods.
Furthermore, we propose an Evolutionary Neural Architecture
Search (ENAS) strategy for the appearance descriptor named
Genetic-SORT to assist exploration. The experimental results
demonstrate that tracking performance fails to follow the im-
provements applied on the appearance descriptor and even shows
a negative correlation, which is contrary to our intuition.

Index Terms—Multiple Object Tracking, Evolutionary Neural
Architecture Search, Appearance Descriptor.

I. INTRODUCTION

Multiple Object Tracking (MOT) has been a popular task
in the research area of computer vision [1]–[3], which aims at
tracking the displacement of each object and determining their
identities in a continuous series of video frames [4]. MOT has
a wide range of real-world applications. For example, MOT-
driven intelligent surveillance [5] can provide trajectories of
suspects for authorities to track them down. Similarly, robot
navigation [6] also benefits a lot from trajectories of multiple
surrounding objects. Thanks to significant advances in Deep
Neural Networks (DNNs) in recent years [7], the performance
of object detection has reached a new level, which leads the
tracking-by-detection mechanism to be a popular pipeline in
the research scope of MOT.

Commonly, a typical tracking-by-detection MOT system is
composed of two parts: a detector and a data association
strategy [8]. The detector attempts to precisely localize every
object with a bounding box in each frame along with their
classifications. The data association refers to the stage of
assigning the detection bounding boxes of adjacent frames to
specified identities. In those MOT works that favor studying
data association, the detector is often replaced with a publicly
available detection dataset that corresponds to the training
image sequences, making tracking performance dependent

only on the data association. For further understanding about
data association, considering a case of three detection boxes
that wait to be assigned to a specific identity in the i+1 frame
as shown in Fig. 1: the dotted lines indicate no matching pairs
have been determined between these adjacent frames, while
the solid lines suggest identities of all detection boxes have
been determined by various association approaches, e.g. mod-
eling motion and appearance information for each detection
box.

Among the enormous amount of tracking-by-detection
methods, DeepSORT [9] stands out for its relatively elegant
pipeline design and fast inference speed, whose tracking
procedure can be illustrated in Fig. 2: frames of the input video
sequence along with their corresponding detection information
go through the data association stage, where the assignment
cost will be calculated between each pair of detection boxes
among consecutive frames to assist Hungarian assignment.
The assignment result finally contributes to deriving relatively
accurate trajectories of tracked objects.

Specifically, at the data association stage of DeepSORT,
it introduced a hand-designed Convolutional Neural Network
(CNN) [10] called appearance descriptor [11] to extract deep
appearance features of possible identities. Afterward, the
cosine similarity between each pair of possible matching
identities will be calculated in the embedding space as a
solid indicator that assists data association. To learn such
an appearance descriptor that matches identity pairs better,
and thus improving the consistency of tracking trajectories,
researchers developed a learning-based scheme for the appear-
ance descriptor based on the training and evaluating policy of
re-identification (ReID) [12] since they share a common sub-
task, that is to construct closer features in the embedding space
when dealing with detection boxes from the same identity.

To date, for further performance improvement on clas-
sical tracking-by-detection pipelines like DeepSORT, many
researchers have devoted themselves to figuring how various
components of such pipelines relate to tracking performance.
While so far, few researchers have focused on the effec-
tiveness of the appearance descriptor and how it relates to
tracking performance. Given this, we would like to adopt
some latest optimization methods on the appearance descriptor
which covers different aspects of deep learning, i.e., the data



Before Data Association

: Possible matching pairs before data association
: Determined matching pairs after data association

Person 1 Person 2 Person 3

Person UnknownPerson Unknown Person Unknown

Tim
e

After Data Association

Person 1 Person 2 Person 3

Person 3Person 2 Person 1

Fig. 1. Illustration of the data association between detection boxes

preprocessing, training, loss function, and model structure,
to explore the deeper relation between appearance descriptor
and tracking performance. It is worth mentioning that we
use the Evolutionary Neural Architecture Search (ENAS) [13]
approach when exploring the effect of model structure on
the appearance descriptor, and an evolutionary algorithm for
searching appearance descriptor named Genetic-SORT is pro-
posed to assist architecture optimization.

Our main contributions are as follows:
• A convenient and efficient experiment pipeline is built in

this paper. It incorporates several key components includ-
ing the ENAS module, ReID training & evaluation, Deep-
SORT tracking, and MOT metric evaluation. This pipeline
greatly helps to obtain results of the subsequent experi-
ments. Code will be available once this paper goes public
(https://github.com/MrZilinXiao/Exploring-DeepSORT).

• The extensive experiments demonstrate that the rela-
tion of the global appearance descriptor and tracking
performance is counter-intuitive: numerous optimization
methods on the global feature extractor are not reflected
in the tracking metrics, but even show degradation effect.

• Our experimental observations show that the tracking
performance of such two-stage tracking pipelines like
DeepSORT may suffer from the bottleneck of global
features extracted by the appearance model. This may
give researchers some insight: attempts to improve the
performance of classical two-stage tracking pipelines by
improving the global appearance descriptor are likely to
be futile at all.

The remaining of this paper are organized as follows. The
related works, including the MOT and ENAS, are provided
in Section II. In Section III, details of the designed ENAS
algorithm and traditional optimizations are documented. Im-
mediately after, the experimental setting and result are given
in Sections IV and V. Finally, the conclusions are shown in
Section VI.

II. RELATED WORKS

To help readers get a better understanding of our work, some
related work concerning Multiple Object Tracking (MOT) and

Evolutionary Neural Architecture Search (ENAS) are reviewed
in this section.

A. Multiple Object Tracking (MOT)

Classical two-stage MOT approaches are usually imple-
mented via detection-and-association pipelines. One of them
named SORT [14], proposed by Bewley et al. , totally discard
appearance features of identities when conducting data associ-
ation, claiming to keep in line with Occam’s Razor. Wojke et
al. [9] retain almost identical data association strategies of
SORT except for replacing assignment cost to cosine distance
between deep appearance features. Apart from the Hungarian
algorithm, others are also available for the assignment prob-
lem, for example, Yu et al. [15] adopt the Kuhn-Munkres
algorithm for the data association. Some creative ideas for
the data association were proposed, such as Kim et al. ’s
success [16] on deploying bilinear LSTM in the appearance
model to tackle the long-term dependency of each identity. The
recurrent model is also capable of tackling other problems in
the detection-association pipeline, for example, Milan et al.
[17] creatively use LSTMs to solve data association instead
of statistical methods. Some researchers want to find an
alternative way to improve tracking performance, such as by
improving detection: Long et al. [18] make some successful
attempts to solve unreliable detection and intra-class occlusion
through deep neural networks.

In recent years, some works focus on how to integrate
detection and association into a unified task. Wang et al. [19]
integrate an appearance embedding model into the detector to
allow both detection and feature can be inferred from a single
model without a significant performance drop. Zhang et al.
[20] introduce an encoder-decoder network to generate a hi-
res feature map then sends it to two homogeneous branches
for yielding detection and appearance features respectively.

B. Evolutionary Neural Architecture Search (ENAS)

Neural Architecture Search (NAS) can be treated as a
subfield of automatic machine learning [21]. It attempts to find
a proper neural network architecture with better generalization
capability on a specific task compared with human-designed
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Fig. 2. Tracking procedure of DeepSORT, where colorful boxes indicate identified objects, black boxes indicate unidentified objects and blue arrows indicate
object movement between adjacent frames.

ones. Being one of the first to make efforts on NAS, Zoph et
al. [22], [23] use the Reinforcement Learning (RL) strat-
egy to train recurrent neural networks for generating hyper-
parameters of each layer, contributing a network structure that
rivaled the best manually-designed network at that time. Liu et
al. [24] and Chen et al. [25] respectively develop a continuous
relaxation of the search space, turning the search process
from discrete to differentiable, hence bringing the possibilities
to apply gradient descent to optimize NAS problems. The
above works have laid the foundations for future research
on various subfields, for example, Quan et al. [26] consider
the characteristics of the ReID task and employ DARTS [24]
technique into searching part-aware ReID models.

Among a large number of NAS approaches, ENAS stands
out for its elegance and relatively modest computational con-
sumption. Unlike other NAS methods, ENAS uses a series of
evolutionary computation approaches to optimize model struc-
tures instead of RL and gradient-based ones. Genetic Algo-
rithm (GA) [27] and Particle Swarm Optimization (PSO) [28],
for example, are used for searching neural architectures of spe-
cific tasks like image classification. Genetic CNN [29] designs
a fixed-length binary-encoding strategy to represent connec-
tions between nodes in a candidate structure. PSO-CNN [30]
proposes a searching strategy based on PSO to achieve faster
convergence comparing other evolutionary methods. CNN-
GA [31] develops a promising GA-based searching algorithm
that requires minimal human expert knowledge while still
yields outstanding performance.

III. METHODOLOGY

In this section, in order to explore the relationship between
the appearance model and tracking performance, some op-
timization methods that are intuitively regarded to improve
ReID metrics of the appearance model will be discussed.
Specifically, an overview of the appearance model structure
for experiments is given first. Then two types of optimization
methods: ENAS methods and traditional tricks are illustrated.

A. Method to Exploring Architecture

CNN-GA [31], as one of the state-of-the-art ENAS algo-
rithms, has evolved a great network targeting image classifi-
cation task. We will make some improvements based on this
algorithm to evolving the appearance backbone architecture.
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Fig. 3. Corresponding encoding of the DeepSORT original appearance
descriptor, where number pairs like 3/32 indicate in/out channel of certain
block

By analogy with the genetic algorithm, CNN-GA treats
candidate models as individuals, building blocks as genes,
and it also proposed corresponding encoding & decoding
strategies and genetic operators: crossover and mutation. In
this paper, we refer to the original DeepSORT appearance
model to design the search space. The original model is a
linear combination of Conv2D, Max-Pooling and Residual
blocks, which happens to meet the search space of CNN-GA.
Different from traditional searching strategies, ENAS methods
usually do not restrict the search space by explicit limitations,
but rather by a limited number of evolutionary operations.
We choose almost the same candidate building blocks as
the original model, except for that Mean Pooling block is
also allowed. Each block with its hyper-parameter is encoded
in the corresponding chromosome. We simply illustrate the
encoding strategy in Fig. 3 by turning the original model into
an individual chromosome.

In addition to inheriting basic evolving strategy from CNN-
GA, we have also adapted some new features to match the
characteristics of the ReID task:

1) Extreme evolving situations are thrown away to speed
up the evolutionary process and conserve computation
resources. This means no architectures that start with
a pooling layer and no consecutive pooling layers are
allowed.

2) Since pooling blocks and residual blocks with different
in/out channel will reduce the spatial size of feature map,
it’s crucial to set a limit to the number of these blocks to
prevent such situations where evolved models produce
feature maps with too small spatial size.

3) Crossover and mutation operators are more restricted
since the above restrictions still hold for offspring.
For example, when performing crossover between two
individuals, offsprings that conflict with the above re-
strictions are not allowed, meaning only those crossover



combinations that meet all restrictions may survive and
get into the next generation.

To distinguish it from CNN-GA, we name the proposed
evolutionary strategy for the appearance model Genetic-SORT.

B. Traditional Optimization Methods

In this subsection, six promising optimization approaches on
the appearance model are introduced and they correspond to
many key points of solving a deep learning problem, includ-
ing data preprocessing, training and loss function. The vast
majority of them proved to be effective in later experiments.

1) Random Erasing: Apart from resizing, random horizon-
tal flipping, padding, random cropping and normalization, ran-
dom erasing from [32] is also a promising data augmentation
procedure, especially for small dataset. This procedure puts
a rectangle region on image randomly then erases its pixels
with random values. It would introduce occlusion in various
extents, hence leading to better generalization on a held-out
dataset.

2) Warming-up Learning Rate: Warming-up learning rate
scheduler proposed in [33] is a strategy to slow the optimiza-
tion on models for initial epochs rather than using standard
multi-step learning rate schedule. Learning rate will be re-
stored to predefined base LR at a linear rate, and milestones
of the multi-step scheduler are still allowed.

3) Label Smoothing: Similar to the image classification
task, one efficient way of optimizing ReID performance is
to add a classifier after the feature extractor. The classifier
contributes to making embeddings of different identities sep-
arable in feature space with the help of softmax cross-entropy
loss. Since this loss here is designed for correctly determining
object ID, researchers called it ID loss [34]. To be clear, ID
loss can be represented as:

Identif (t) =

K∑
i=1

−pi log (p̂i)

Here t denotes the target class. p̂i denotes ID prediction logits
of class i, and if y denotes ground-truth ID label,

pi =

{
0, y 6= i
1, y = i

Label smoothing proposed in [35] is a regularization mech-
anism to prevent overfitting on small dataset. To be simple but
specific, label smoothing alters pi definition above into:

pi =

{
1− N−1

N ε if i = y,
ε/N otherwise

where N is the number of identities and ε is a small constant,
trying to lower the confidence of the model on training ID
labels.

4) Center Loss: Triplet loss proposed in [36] works when
optimizing inter-class distance, but it still has some flaws
like the inability to provide globally optimal constraint due
to random triplet sample strategy from dataset. Center loss
proposed in [37] cleverly bypasses the limitations of sampling
by learning a center for features of each identity and penalizes

the distances between features and their corresponding identity
centers. Center loss is formulated as follows:

LC =
1

2

m∑
i=1

‖xi − cyi
‖22

where cyi
∈ Rd denotes the yi th identity center of fea-

tures. This formula indicates center loss attempts to minimize
euclidean distances between feature and its center, hence
increasing intra-class compactness.

5) Last Stride: Last stride means the stride hyper-
parameter of the last several layers. By reducing last stride, we
may obtain a feature map with a higher spatial size. According
to Sun et al. [38], reducing last stride helps to decrease the
down-sampling rate of the backbone network, which enriches
the granularity of feature. Taking ResNet-50 as an example,
when the input image size is (256, 128), by reducing last stride
from 2 to 1, we get a feature map of size 16 × 8, which is
four times the size of original 8× 4 one.

6) BatchNormNeck(BNNeck): BatchNormNeck(BNNeck)
refers to the batch normalization layer between backbone and
classifier. When training ReID models, the combination of ID
loss and triplet loss [36] seems to work as expected while
the former one is mainly responsible for optimizing intra-class
distance and the latter one is mainly responsible for optimizing
inter-class distance. But Luo et al. [39] found that these two
losses show inconsistency in the same feature space. To relieve
this problem, BNNeck is introduced between backbone and
classifier. We denote features before the BN layer as ft, and
normalized ones as fi. Two losses are not going to applied onto
f , but be computed on ft, fi respectively. BNNeck ensures
that fi are gaussianly distributed near the surface of feature
hypersphere, making the ID loss easier to converge. Also, since
the hypersphere is almost symmetric about the coordinate axis,
we need to freeze the bias of BN layer and disable the bias
of fully-connected layer to avoid deviation from the origin of
the feature space.

IV. EXPERIMENT DESIGN

In this section, we deliver the experimental design to achieve
our goal mentioned in Section I, that is discovering the rela-
tionship between appearance model and tracking performance.
Experiments are present in detail, including dataset, evaluation
metrics and settings of extensive experiments.

A. Dataset

We conduct all experiments on the MOT16 dataset [40], a
famous benchmark MOT dataset involving mostly pedestrians.
But there exists a problem: the data format of MOT16 dataset
is not designed for ReID training as the annotation format
given in MOT16 dataset only includes coordinates of each
identity at every frame, which disagrees with ReID training
pipeline. To overcome that, we first segmented all identities
based on annotations and split them into training set and test
set at a ratio of 9 : 1 in a stratified fashion to keep balanced la-
bel distribution. Only pedestrians are considered and identities
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with less than 10 frames are removed from dataset. Given the
imprecise detection from MOT16, all experiments conducted
below used public detection from [15]. The preprocessing
pipeline is illustrated in Fig. 4.

For fairness and ease of evaluating tracking metrics, the
sequences MOT16-09 and MOT16-10 are designated as a held-
out validation set.

All images are first resized into (256, 128), then flipped
horizontally with a 50% probability, and randomly cropped to
(256, 128) after being padded with 10 pixels. If random eras-
ing is enabled, images will be erased at randomly distributed
rectangle areas.

B. Metric

To measure the performance of tracking and Re-ID accu-
rately, metrics for each should be determined. For MOT task,
it’s hard to use a single metric to evaluate its performance
since object tracking is never a single-objective task, so we
borrowed the most frequently used metrics from [41], [42],
defined as follows:

• MOTA(⇑): Multi-object tracking accuracy, which takes
false negatives, false positives and identity switches into
consideration.

• IDsw(⇓): Identity Switch. The number of cases where the
identity of a tracked object is altered incorrectly.

• FP(⇓): False Positives. The number of false alarms.
• FN(⇓): False Negatives. The number of missed targets.

We compute all metrics mentioned in [41] when conducting
experiments but focus on MOTA, FP, FN and IDsw, where ⇑
denotes that a higher metric indicates better performance, and
⇓ denotes a lower metric indicates better performance.

Besides those, CMC and mAP, two crucial metrics for ReID
evaluation are calculated after each epoch for determining
whether ReID performance has a huge impact on tracking
metrics.

• CMC, or cumulative matching characteristics, can be
illustrated as a curve on the 2-D plane, where the y-axis
stands for a rank and the x-axis stands for identification
accuracy at the specific rank. At our single-gallery-
shot scenario, where no camera identities are provided,
identification accuracy for a single query is represented
as TopK accuracy, defined as follows:

TopK =

 1,where the first K results contain one with
the same identity of query

0, otherwise

• mAP, or mean average precision, is nothing different with
traditional classification mAP, except that mAP for ReID
calculates AP for each query instead of for each class.

C. Experimental Settings

In this subsection, settings for traditional optimizations are
first introduced. We choose ResNet-50 [43] with softmax loss
and triplet loss as initial baselines. Each model has gone
through 30 epochs training with Adam optimizer. Specifica-
tions of these improvements are as follows: If triplet loss is
enabled, then the margin of it will be set to 0.3, and the training
sampler will be a triplet sampler that samples 4 instances in
every mini-batch instead of a default shuffler. If the center
loss is enabled, the weight of it will be set to 0.005, and
the optimizer for center loss is SGD with lr = 0.5. If label
smoothing is enabled, ε will be set to 0.1. Base LR is set to



TABLE I
EVOLVING HYPER-PARAMETERS

Population Size 10

Predefined Block List
Conv2D Block(3× 3)
Residual Block
Max/Mean Pooling Block

Predefined Channel List [64, 128, 256]
Max Generation Number 20
Conv2D Limit [1, 3]
Residual Limit [3, 6]
Pool Limit [1, 2]
Reduction Blocks Limit 3
Genetic Operation Probabilities [0.9, 0.2]
Mutation Probabilities [0.7, 0.1, 0.1, 0.1, 0]

3.5×10−4 and the learning rate holds constant if warming-up
is disabled. The initial warming-up factor is 1

3 and warming-
up ends at epoch 10. A milestone of multi-step scheduler is
set at epoch 20 if warming-up is enabled.

As for ENAS approach, we first give all hyper-parameters
of Genetic-SORT in Table I, of which predefined chan-
nel list gives all possible out channel of a block, and
Conv2D/Residual/Pool Limit tells lower and upper bound of
their numbers during the evolutionary progress. Two elements
of genetic operation probabilities designate the chance of
crossover and mutation respectively. Five elements of muta-
tion probabilities stand for the chances of adding a residual
block, adding a convolutional block, adding a pooling block,
removing block and altering parameters of a certain block
successively.

V. EXPERIMENT RESULT

In this section, we illustrate our experiment result. Both
the traditional approach to optimizing and ENAS one yield a
similar conclusion: no significant increases in tracking metrics
when improving ReID metrics via introducing various methods
mentioned in Section III. At the end of this section, we offer
some discussion related to such a conclusion.

A. Result of Traditional Optimization

The best metrics of traditional optimizations are recorded
in Table II. In Table II, metrics of two baselines are at the
top line of each sub-table, while metrics of other improved
models are reported in relative numbers(+/-).

Each line in Table II tells evaluation metrics of certain
model on both tasks. We can see clearly that, with additional
improvements, ReID performance improves while tracking de-
teriorates at most scenes. Label smooth, center loss, last stride
all show a positive effect on ReID metrics, but no trace of a
similar effect on tracking metrics are found. Random erasing
worsens metrics on both tasks. BNNeck works as expected on
relieving the inconsistency between triplet loss and ID loss,
but still fails to perform better than its corresponding baseline
on tracking task.

TABLE II
COMPARISONS ON METRICS OF DIFFERENT IMPROVEMENTS DEPLOYED

ON THE BASELINES

Model
Metric

mAP CMC@Rank1 MOTA

resnet50 softmax 93.63% 97.13% 0.5861
+labelsmooth +2.69% +0.32% -0.0013
+warmup +3.85% +0.95% -0.0012
+center +4.00% +0.64% -0.0006
+last stride +0.64% -0.32% -0.0021
+random erasing -1.06% -0.32% -0.0034
resnet50 triplet 86.56% 93.31% 0.5881
+softmax +6.88% +4.14% -0.0052
+softmax bnneck +9.58% +4.46% -0.0016
+softmax last stride +5.63% +3.50% -0.0071
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Fig. 5. The evolutionary trajectory of Genetic-SORT attempting to search
architectures on MOT16 dataset.

B. Result of Genetic-SORT

In the evolutionary process which takes mAP as fitness,
the numerical trends among the number of generation, ReID
metrics and tracking metrics can be easily seen from Fig. 5.
The upper and lower edges of each green bar indicate the
highest and lowest mAP reached by a certain generation while
the red curve tells the best MOTA achieved by each generation.
This evolving strategy is proven to work in optimizing mAP
for ReID task heuristically from Fig. 5, but it still suffers the
similar fact as we discussed in Part V-A: as the number of
generation grows and ReID metrics improves, tracking metrics
are not showing any positive relevance with ReID metrics but
oscillate and show overall negative correlation trend.

C. Discussion

Such a counter-intuitive conclusion leads one to ponder the
reasons for it. Here we offer some possible explanations:

1) For detection-association two-stage tracking pipeline,
there exists an upper bound to the expressiveness of
global features extracted directly from detection bound-
ing boxes.



2) There is a bottleneck for the two-stage tracking pipeline
where more discriminating features will not contribute
to improvement in tracking performance.

In fact, in present days numerous feature representation
learning methods are gradually being discovered, and lots of
them can be applied in multi-object tracking. Local feature
approach, for example, learns part-aggregated features instead
of global ones. Auxiliary feature approach attempts to inte-
grate semantic information, e.g. pose and dressing, with the
original image. Sequence feature approach learns consecutive
frames in a video rather than a single image, trying to grab
temporal information to assist tracking. These approaches are
more promising in tracking tasks than simply learning global
features.

VI. CONCLUSION

The goal of this paper is to explore the effectiveness of
the appearance descriptor in one of conventional tracking-
by-detection methods, i.e., DeepSORT. To achieve this, we
conduct extensive experiments on it and yield the following
conclusion: various optimization strategies on the global fea-
ture extractor are not reflected in the tracking metrics, and may
even lead to degradation. This implies that global feature is not
the best choice for data association of multi-object tracking,
and researchers need to seek alternatives to further improve
the performance of tracking-by-detection methods.
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